Archive for 2019
The Hedge 7: Leslie Daigle and Internet Invariants

Some things always change, and some things never change. In this episode of the Hedge, Leslie Daigle joins Phill Simonds and Russ White to discuss her research into the things that do not change—and whether or not those things really have changed over the years since her original report for the Internet Society on Internet invariants.
Is it planning… or just plain engineering?
Over at the ECI blog, Jonathan Homa has a nice article about the importance of network planning–
Jonathan describes why this is so–traffic is constantly increasing, and the choice of tools we have to support the traffic loads of today and tomorrow can be classified in two ways: slim and none (as I remember a weather forecaster saying when I “wore a younger man’s shoes”). The problem, however, is not just tools. The network is increasingly seen as a commodity, “pure bandwidth that should be replaceable like memory,” made up of entirely interchangeable parts and pieces, primarily driven by the cost to move a bit across a given distance.
This situation is driving several different reactions in the network engineering world, none of which are really healthy. There is a sense of resignation among people who work on networks. If commodities are driven by price, then the entire life of a network operator or engineer is driven by speed, and speed alone. All that matters is how you can build ever larger networks with ever fewer people–so long as you get the bandwidth you need, nothing else matters.
This is compounded by a simple reality–network world has driven itself into the corner of focusing on the appliance–the entire network is appliances running customized software, with little thought about the entire system. Regardless of whether this is because of the way we educate engineers through our college programs and our certifications, this is the reality on the ground level of network engineering. When your skill set is primarily built around configuring and managing appliances, and the world is increasingly making those appliances into commodities, you find yourself in a rather depressing place.
Further, there is a belief that there is no more real innovation to be had–the end of the road is nigh, and things are going to look pretty much like they look right now for the rest of … well, forever.
I want you, as a network engineer, operator, or whatever you call yourself, to look these beliefs in the eye and call them what they are: nonsense on stilts.
The real situation is this: the current “networking industry,” such as it is, has backed itself into a corner. The emphasis on planning Jonathan brings out is valid, but it is just the tip of the proverbial iceberg. There is a hint in this direction in Jonathan’s article in the list of suggestions (or requirements). Thinking across layers, thinking about failure, continuous optimization… these are all… system level thinking, To put this another way, a railway boxcar might be a commodity, but the railroad system is not. The individual over-the-road truck might be a commodity, and the individual road might not be all that remarkable, but the road system is definitely not a commodity.
The sooner we start thinking outside the appliance as network engineers or operators (or whatever you call yourself), the sooner we will start adding value to the business. This means thinking about algorithms, protocols, and systems–all that “theory stuff” we typically decry as being less than usefl–rather than how to configure x on device y. This means thinking about security across the network, rather than as how you configure a firewall. This means thinking about the tradeoffs with implementing security, including what systemic risk looks like, and when the risks are acceptable when trying to accomplish as specific goal, rather than thinking about how to route traffic through a firewall.
If demand is growing, why is the networking world such a depressing place right now? Why do I see lots of people saying things like “there will be no network engineers in enterprises in five years?” Rather than blaming the world, maybe we should start looking at how we are trying to solve the problems in front of us.
Autonomic, Automated, and Reality
Once the shipping department drops the box off with that new switch, router, or “firewall,” what happens next? You rack it, cable it up, turn it on, and start configuring, right? There are access to controls to configure—SSH, keys, disabling standard accounts, disabling telnet—interface addresses to configure, routing adjacencies to configure, local policies to configure, and… After configuring all of this, you can adjust routing in the network to route around the new device, and then either canary the device “in production” (if you run your network the way it should be run), or find some prearranged maintenance time to bring the new device online and test things out. After all of this, you can leave the new device up and running in the network, and move on to the next task.
Until it breaks.
Then you consult the documentation to remind yourself why it was configured this way, consult the documentation to understand how the application everyone is complaining about not working should work, etc. There are the many hours spent sitting on the console gathering information by running various commands and the output of various logs. Eventually, once you find the problem, you can either replace the right parts, or reconfigure the right bits, and get everything running again.
In the “modern” world (such as it is), we think it’s a huge leap forward to stop configuring devices manually. If we can just automate the configuration of all that “stuff” we have to do at the beginning, after the box is opened and before the device is placed into service, we think we have this whole networking thing pretty well figured out.
Even if you had everything in your network automated, you still haven’t figured this networking thing out.
We need to move beyond automation. Where do we need to move to? It’s not one place, but two. The first is we need to move beyond automation to autonomous operation. As an example, there is a shiny new system that is currently being widely deployed to automate the deployment and management of containers. Part of this system is the automation of connectivity, including routing, between containers. The routing system being deployed as part of this system is essentially statically configured policy-based routing combined with network address translation.
Let me point something out that is not going to be very popular: this is a step backwards in terms of making the system autonomous. Automating static routing information is not a better solution than building a real, dynamic, proactive, autonomic, routing system. It’s not simpler—trust me, I say this as someone who has operated large networks which used automated static routes to do everything.
The “opsification of everything” is neat, but it shouldn’t be our end goal.
Now part of this, I know, is the fault of vendors. Vendors who push EGPs onto data center fabrics because, after all, “the configuration complexity doesn’t matter so long as you can automate it.” The configuration complexity does matter, because configuration complexity belies an underlying protocol complexity, and sets up long and difficult troubleshooting sessions that are completely unnecessary.
The second place we need to move in the networking world? The focus on automation is just another form of focusing on configuration. We abstract the configuration, and we touch a lot more devices at once, but we are still thinking about configuration. The more we think about configuration, the less we think about how the system should work, how it really works, what the gaps are, and how to bridge those gaps. So long as we are focused on the configuration, automated or not, we are not focused on how the network can bring value to the business. The longer we are focused on configuration, the less value we are bringing to the business, and the more likely we are to end up being replaced by … an automated system … no matter how poorly that automated system actually works.
And no, the cloud isn’t going to solve this. Containers aren’t going to solve this. The “automated configuration pattern” is already being repeated in the cloud. As more complex workloads are moved into the cloud, the problems there are only going to get harder. What starts out as a “simple” system using policy-based routing analogs and network address translation configured through an automation server will eventually look complex against the hardest problems we had to solve using T1’s, frame relay circuits, inverse multiplexers, wire down patch panels, and mechanical switch crossbar frames. It’s fun to pretend we don’t need dynamic routing to solve the problems that face the network—at least until you hit hard problems, and have to relearn the lessons of the last 20+ years.
Yes, I know vendors are partly to blame for this. I know that, for a vendor, it’s easier to get people to buy into your CLI, or your entire ecosystem, rather than getting them to think about how to solve the problems your business is handing them.
On the other hand, none of this is going to change from the top down. This is only going to change when the average network engineer starts asking vendors for truly simpler solutions that don’t require reams configuration information. It will change when network engineers get their heads out of the configuration and features, and into the business problems.
The Hedge 6: Geoff Huston on DoH

In this episode of the Hedge, Geoff Huston joins Tom Ammon and Russ White to finish the discussion on the ideas behind DNS over HTTPS (DoH), and to consider the implications of its widespread adoption. Is it time to bow to our new overlords?
This is part two of a two part series.
The Hedge 5: Geoff Huston on DoH

In this episode of the Hedge, Geoff Huston joins Tom Ammon and Russ White to discuss the ideas behind DNS over HTTPS (DoH), and to consider the implications of its widespread adoption. Is it time to bow to our new overlords?
This is part one of a two part series.
Stop Using the OSI Model
We all use the OSI model to describe the way networks work. I have, in fact, included it in just about every presentation, and every book I have written, someplace in the fundamentals of networking. But if you have every looked at the OSI model and had to scratch your head trying to figure out how it really fits with the networks we operate today, or what the OSI model is telling you in terms of troubleshooting, design, or operation—you are not alone. Lots of people have scratched their heads about the OSI model, trying to understand how it fits with modern networking. There is a reason this is so difficult to figure out.
The OSI Model does not accurately describe networks.
What set me off in this particular direction this week is an article over at Errata Security:
This is partly true, and yet a bit … over the top. 🙂 OTOH, the point is well taken: the OSI model is not an ideal model for understanding networks. Maybe a bit of analysis would be helpful in understanding why.
First, while the OSI model was developed with packet switching networks in mind, the general idea was to come as close as possible to emulating the circuit-switched networks widely deployed at the time. A lot of thought had gone into making those circuit-switched networks work, and applications had been built around the way they worked. Applications and circuit-switched networks formed a sort of symbiotic relationship, just as applications form with packet-switched networks today; it was unimaginable, at the time, that “everything would change.”
So while the designers of the OSI model understood the basic value of the packet-switched network, they also understood the value of the circuit-switched network, and tried to find a way to solve both sets of problems in the same network. Experience has shown it is possible to build a somewhat close-to-circuit switched network on top of packet switched networks, but not quite in the way, nor as close to perfect emulation, as those original designers thought. So the OSI model is a bit complex and perhaps overspecified, making it less-than-useful today.
Second, the OSI model largely ignored the role of middleboxes, focusing instead on the stacks implemented and deployed in hosts. This, again, makes sense, as there was no such thing as a device specialized in the switching of packets at the time. Hosts took packets in and processed them. Some packets were sent along to other hosts, other packets were consumed locally. Think PDP-11 with some rough code, rather than even an early Cisco CGS.
Third, the OSI model focuses on what each layer does from the perspective of an application, rather than focusing on what is being done to the data in order to transmit it. The OSI model is built “top down,” rather than “bottom up,” in other words. While this might be really useful if you are an application developer, it is not so useful if you are a network engineer.
So—what should we say about the OSI model?
It was much more useful at some point in the past, when networking was really just “something a host did,” rather than its own sort of sub-field, with specialized protocols, techniques, and designs. It was a very good attempt at sorting out what a network needed to do to move traffic, from the perspective of an application.
What it is not, however, is really all that useful for network engineers working within an engineering specialty to understand how to design protocols, and how to design networks on which those protocols will run. What should we replace it with? I would begin by pointing you to the RINA model, which I think is a better place to start. I’ve written a bit about the RINA model, and used the RINA model as one of the foundational pieces of Computer Networking Problems and Solutions.
Since writing that, however, I have been thinking further about this problem. Over the next six months or so, I plan to build a course around this question. For the moment, I don’t want to spoil the fun, or put any half-backed thoughts out there in the wild.
The Hedge 4: Joe Cozzupoli

Multicloud is all the rage — but is this always an intentional state of affairs, or do companies just “fall into” multicloud? Security in multicloud and certifications round out this episode of the Hedge, where we are joined by Joe Cozzupoli. You can get in touch with Joe through twitter at @jcozzupo24150.
