The RPKI, for those who do not know, ties the origin AS to a prefix using a certificate (the Route Origin Authorization, or ROA) signed by a third party. The third party, in this case, is validating that the AS in the ROA is authorized to advertise the destination prefix in the ROA—if ROA’s were self-signed, the security would be no better than simply advertising the prefix in BGP. Who should be able to sign these ROAs? The assigning authority makes the most sense—the Regional Internet Registries (RIRs), since they (should) know which company owns which set of AS numbers and prefixes.

The general idea makes sense—you should not accept routes from “just anyone,” as they might be advertising the route for any number of reasons. An operator could advertise routes to source spam or phishing emails, or some government agency might advertise a route to redirect traffic, or block access to some web site. But … if you haven’t found the tradeoffs, you haven’t looked hard enough. Security, in particular, is replete with tradeoffs.

Every time you deploy some new security mechanism, you create some new attack surface—sometimes more than one. Deploy a stateful packet filter to protect a server, and the device itself becomes a target of attack, including buffer overflows, phishing attacks to gain access to the device as a launch-point into the private network, and the holes you have to punch in the filters to allow services to work. What about the RPKI?

When the RKI was first proposed, one of my various concerns was the creation of new attack services. One specific attack surface is the control a single organization—the issuing RIR—has over the very existence of the operator. Suppose you start a new content provider. To get the new service up and running, you sign a contract with an RIR for some address space, sign a contract with some upstream provider (or providers), set up your servers and service, and start advertising routes. For whatever reason, your service goes viral, netting millions of users in a short span of time.

Now assume the RIR receives a complaint against your service for whatever reason—the reason for the complaint is not important. This places the RIR in the position of a prosecutor, defense attorney, and judge—the RIR must somehow figure out whether or not the charges are true, figure out whether or not taking action on the charges is warranted, and then take the action they’ve settled on.

In the case of a government agency (or a large criminal organization) making the complaint, there is probably going to be little the RIR can do other than simply revoke your certificate, pulling your service off-line.

Overnight your business is gone. You can drag the case through the court system, of course, but this can take years. In the meantime, you are losing users, other services are imitating what you built, and you have no money to pay the legal fees.

A true story—without the names. I once knew a man who worked for a satellite provider, let’s call them SATA. Now, SATA’s leadership decided they had no expertise in accounts receivables, and they were spending too much time on trying to collect overdue bills, so they outsourced the process. SATB, a competing service, decided to buy the firm SATA outsourced their accounts receivables to. You can imagine what happens next… The accounting firm worked as hard as it could to reduce the revenue SATA was receiving.

Of course, SATA sued the accounting firm, but before the case could make it to court, SATA ran out of money, laid off all their people, and shut their service down. SATA essentially went out of business. They won some money later, in court, but … whatever money they won was just given to the investors of various kinds to make up for losses. The business itself was gone, permanently.

Herein lies the danger of giving a single entity like an RIR, even if they are friendly, honest, etc., control over a critical resource.

A recent paper presented at the ANRW at APNIC caught my attention as a potential way to solve this problem. The idea is simple—just allow (or even require) multiple signatures on a ROA. To be more accurate, each authorizing party issues a “partial certificate;” if “enough” pieces of the certificate are found and valid, the route will be validated.

The question is—how many signatures (or parts of the signature, or partial attestations) should be enough? The authors of the paper suggest there should be a “Threshold Signature Module” that makes this decision. The attestations of the various signers are combined in the threshold module to produce a single signature that is then used to validate the route. This way the validation process on the router remains the same, which means the only real change in the overall RPKI system is the addition of the threshold module.

If one RIR—even the one that allocated the addresses you are using—revokes their attestation on your ROA, the remaining attestations should be enough to convince anyone receiving your route that it is still valid. Since there are five regions, you have at least five different choices to countersign your ROA. Each RIR is under the control of a different national government; hence organizations like governments (or criminals!) would need to work across multiple RIRs and through other government organizations to have a ROA completely revoked.

An alternate solutions here, one that follows the PGP model, might be to simply have the threshold signature model consider the number and source of ROAs using the existing model. Local policy could determine how to weight attestations from different RIRs, etc.

This multiple or “shared” attestation (or signature) idea seems like a neat way to work around one of (possibly the major) attack surfaces introduced by the RPKI system. If you are interested in Internet core routing security, you should take a read through the post linked above, and then watch the video.