At the most basic level, there are only three BGP policies: pushing traffic through a specific exit point; pulling traffic through a specific entry point; preventing a remote AS (more than one AS hop away) from transiting your AS to reach a specific destination. In this series I’m going to discuss different reasons for these kinds of policies, and different ways to implement them in interdomain BGP.
There are many reasons an operator might want to select which neighboring AS through which to send traffic towards a given reachable destination (for instance, 100::/64). Each of these examples assumes the AS in question has learned multiple paths towards 100::/64, one from each peer, and must choose one of the two available paths to forward along. This post wil consider selecting an exit point from the perspective of two more autonomous systems.
At the most basic level, there are only three BGP policies: pushing traffic through a specific exit point; pulling traffic through a specific entry point; preventing a remote AS (more than one AS hop away) from transiting your AS to reach a specific destination. In this series I’m going to discuss different reasons for these kinds of policies, and different ways to implement them in interdomain BGP.
Software Eats the World?
I’m told software is going to eat the world very soon now. Everything already is, or will be, software based. To some folks, this sounds completely wonderful, but—leaving aside the privacy issues—I still see an elephant in the room with this vision of the future.
Quality.
Let me give you some recent examples.
First, ceiling fans. Modern ceiling fans, in case you didn’t know, don’t rely on the wall switch and pull chains. Instead, they rely on remote controls. This is brilliant—you can dim the light, change the speed of the fan, etc., from a remote control. No unsightly chains hanging from the ceiling.
Way in the past, the EIGRP team (including me) had an interesting idea–why not aggregate routes automatically as much as possible, along classless bounds, and then deaggregate routes when we could detect some failure was causing a routing black hole? To understand this concept better, consider the network below.
Many service providers have the feeling that they “didn’t do anything wrong, but somehow we still lost.” How are providers reacting to the massive changes in the networking field, and how are they trying to regain their footing so they can move into the coming decades better positioned to compete? Join Johan Gustawsson, Tom Ammon, and Russ White as we discuss the impact of merchant silicon and changing applications on the architecture of service providers.
One of the designs I’ve been encountering a lot of recently is a “collapsed spine” data center network, as shown in the illustration below.
We have the twelve truths of networking, and possibly Akin’s Laws, but is there a set of rules for network design? I couldn’t find one, so I decided to create one, containing 18 laws I’ve listed below.
This last week I was talking to someone at a small startup that intends to eliminate all the complex routing from campus networks. In the past, when reading blog posts about Kubernetes, I’ve read about how it was designed to eliminate routing protocols because “routing protocols are so complex.”
Color me skeptical.
While reading a research paper on address spoofing from 2019, I ran into this on NAT (really PAT) failures—
It’s easy to assume automation can solve anything and that it’s cheap to deploy—that there are a lot of upsides to automation, and no downsides. In this episode of the Hedge, Terry Slattery joins Tom Ammon and Russ White to discuss something we don’t often talk about, the Return on Investment (ROI) of automation.