We don’t often do a post-mortem on the development and deployment of new protocols … but here at the Hedge we’re going to brave these deep waters to discuss some of the lessons we can learn from the development and deployment of IPv6, especially as they apply to design and deployment cycles in the “average network” (if there is such at thing). Join us as James Harr, Tom Ammon, and Russ White consider the lessons we can learn from IPv6’s checkered history.
From the question pile: Route servers (as opposed to route reflectors) don’t change anything about a BGP route when re-advertising it to a peer, whether iBGP or eBGP. Why don’t route servers cause routing loops (or other problems) in a BGP network?
Route servers are often used by Internet Exchange Points (IXPs) to distribute routes between connected BGP speakers. BGP route servers
- Don’t change anything about a received BGP route when advertising the route to its peers (other BGP speakers)
- Don’t install routes received through BGP into the local routing table
Shouldn’t using route servers in a network—pontentially, at least—cause routing loops or other BGP routing issues?
While RFC9199 (are we really in the 9000’s?) is targeted at large-scale DNS deployments–specifically root zone operators–so it might seem the average operator won’t find a lot of value here.
This is, however, far from the truth. Every lesson we’ve learned in deploying large-scale DNS root servers applies to any other large-scale user-facing service. Internally deployed DNS recursive servers are an obvious instance, but the lessons here might well apply to a scheduling, banking, or any other multi-user application accessed from a lot of places by a lot of different users. There are some unique points in DNS, such as the relatively slower pace of database synchronization across nodes, but the network-side lessons can still be useful for a lot of applications.
One of the many reasons engineers should work for a vendor, consulting company, or someone other than a single network operator at some point in their career is to develop a larger view of network operations. What are common ways of doing things? What are uncommon ways? In what ways is every network broken? Over time, if you see enough networks, you start seeing common themes and ideas. Just like history, networks might not always be the same, but the problems we all encounter often rhyme. Ken Celenza joins Tom Ammon, Eyvonne Sharp, and Russ White to discuss these common traits—ten things I know about your network.
My video on BGP convergence elicited a lot of . . . feedback, mainly concerning the difference between convergence in a data center fabric and convergence in the DFZ. Let’s begin here—BGP hunt and the impact of the MRAI are very real in the DFZ. Withdrawing a route can take several minutes.
What about the much more controlled environment of a data center fabric?
Several folks pointed out that the MRAI is often set to 0 in DC fabrics (and many implementations by default). Further, almost all implementations will use an MRAI of 0 for the first received update, holding the second and subsequent advertisements by the MRAI. Several folks also pointed out that all the paths through a DC fabric are the same length, so the second part of the equation is also very small.
These are good points—how do they impact BGP convergence? Let’s use the network below, a small slice of a five-stage butterfly fabric, to think it through. Assume every router is in a different AS, so all the peering sessions are eBGP.
At the most basic level, there are only three BGP policies: pushing traffic through a specific exit point; pulling traffic through a specific entry point; preventing a remote AS (more than one AS hop away) from transiting your AS to reach a specific destination. In this series I’m going to discuss different reasons for these kinds of policies, and different ways to implement them in interdomain BGP.
There are many reasons an operator might want to select which neighboring AS through which to send traffic towards a given reachable destination (for instance, 100::/64). Each of these examples assumes the AS in question has learned multiple paths towards 100::/64, one from each peer, and must choose one of the two available paths to forward along. This post wil consider selecting an exit point from the perspective of two more autonomous systems.
At the most basic level, there are only three BGP policies: pushing traffic through a specific exit point; pulling traffic through a specific entry point; preventing a remote AS (more than one AS hop away) from transiting your AS to reach a specific destination. In this series I’m going to discuss different reasons for these kinds of policies, and different ways to implement them in interdomain BGP.
Software Eats the World?
I’m told software is going to eat the world very soon now. Everything already is, or will be, software based. To some folks, this sounds completely wonderful, but—leaving aside the privacy issues—I still see an elephant in the room with this vision of the future.
Quality.
Let me give you some recent examples.
First, ceiling fans. Modern ceiling fans, in case you didn’t know, don’t rely on the wall switch and pull chains. Instead, they rely on remote controls. This is brilliant—you can dim the light, change the speed of the fan, etc., from a remote control. No unsightly chains hanging from the ceiling.
Way in the past, the EIGRP team (including me) had an interesting idea–why not aggregate routes automatically as much as possible, along classless bounds, and then deaggregate routes when we could detect some failure was causing a routing black hole? To understand this concept better, consider the network below.
Many service providers have the feeling that they “didn’t do anything wrong, but somehow we still lost.” How are providers reacting to the massive changes in the networking field, and how are they trying to regain their footing so they can move into the coming decades better positioned to compete? Join Johan Gustawsson, Tom Ammon, and Russ White as we discuss the impact of merchant silicon and changing applications on the architecture of service providers.